Skip to main content
Version: devel

Custom Destination with LanceDB

info

The source code for this example can be found in our repository at: https://github.com/dlt-hub/dlt/tree/devel/docs/examples/custom_destination_lancedb

About this Example

This example showcases a Python script that demonstrates the integration of LanceDB, an open-source vector database, as a custom destination within the dlt ecosystem. The script illustrates the implementation of a custom destination as well as the population of the LanceDB vector store with data from various sources. This highlights the seamless interoperability between dlt and LanceDB.

You can get a Spotify client ID and secret from https://developer.spotify.com/.

We'll learn how to:

Full source code

__source_name__ = "spotify"

import datetime # noqa: I251
import os
from dataclasses import dataclass, fields
from pathlib import Path
from typing import Any

import lancedb # type: ignore
from lancedb.embeddings import get_registry # type: ignore
from lancedb.pydantic import LanceModel, Vector # type: ignore

import dlt
from dlt.common.configuration import configspec
from dlt.common.schema import TTableSchema
from dlt.common.typing import TDataItems, TSecretStrValue
from dlt.sources.helpers import requests
from dlt.sources.helpers.rest_client import RESTClient, AuthConfigBase

# access secrets to get openai key and instantiate embedding function
openai_api_key: str = dlt.secrets.get(
"destination.lancedb.credentials.embedding_model_provider_api_key"
)
func = get_registry().get("openai").create(name="text-embedding-3-small", api_key=openai_api_key)


class EpisodeSchema(LanceModel):
id: str # noqa: A003
name: str
description: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField() # type: ignore[valid-type]
release_date: datetime.date
href: str


@dataclass(frozen=True)
class Shows:
monday_morning_data_chat: str = "3Km3lBNzJpc1nOTJUtbtMh"
latest_space_podcast: str = "2p7zZVwVF6Yk0Zsb4QmT7t"
superdatascience_podcast: str = "1n8P7ZSgfVLVJ3GegxPat1"
lex_fridman: str = "2MAi0BvDc6GTFvKFPXnkCL"


@configspec
class SpotifyAuth(AuthConfigBase):
client_id: str = None
client_secret: TSecretStrValue = None

def __call__(self, request) -> Any:
if not hasattr(self, "access_token"):
self.access_token = self._get_access_token()
request.headers["Authorization"] = f"Bearer {self.access_token}"
return request

def _get_access_token(self) -> Any:
auth_url = "https://accounts.spotify.com/api/token"
auth_response = requests.post(
auth_url,
{
"grant_type": "client_credentials",
"client_id": self.client_id,
"client_secret": self.client_secret,
},
)
return auth_response.json()["access_token"]


@dlt.source
def spotify_shows(
client_id: str = dlt.secrets.value,
client_secret: str = dlt.secrets.value,
):
spotify_base_api_url = "https://api.spotify.com/v1"
client = RESTClient(
base_url=spotify_base_api_url,
auth=SpotifyAuth(client_id=client_id, client_secret=client_secret), # type: ignore[arg-type]
)

for show in fields(Shows):
show_name = show.name
show_id = show.default
url = f"/shows/{show_id}/episodes"
yield dlt.resource(
client.paginate(url, params={"limit": 50}),
name=show_name,
write_disposition="merge",
primary_key="id",
parallelized=True,
max_table_nesting=0,
)


@dlt.destination(batch_size=250, name="lancedb")
def lancedb_destination(items: TDataItems, table: TTableSchema) -> None:
db_path = Path(dlt.config.get("lancedb.db_path"))
db = lancedb.connect(db_path)

# since we are embedding the description field, we need to do some additional cleaning
# for openai. Openai will not accept empty strings or input with more than 8191 tokens
for item in items:
item["description"] = item.get("description") or "No Description"
item["description"] = item["description"][0:8000]
try:
tbl = db.open_table(table["name"])
except FileNotFoundError:
tbl = db.create_table(table["name"], schema=EpisodeSchema)
tbl.add(items)


if __name__ == "__main__":
db_path = Path(dlt.config.get("lancedb.db_path"))
db = lancedb.connect(db_path)

for show in fields(Shows):
db.drop_table(show.name, ignore_missing=True)

pipeline = dlt.pipeline(
pipeline_name="spotify",
destination=lancedb_destination,
dataset_name="spotify_podcast_data",
progress="log",
)

load_info = pipeline.run(spotify_shows())
load_info.raise_on_failed_jobs()
print(load_info)

row_counts = pipeline.last_trace.last_normalize_info
print(row_counts)

query = "French AI scientist with Lex, talking about AGI and Meta and Llama"
table_to_query = "lex_fridman"

tbl = db.open_table(table_to_query)

results = tbl.search(query=query).to_list()
assert results

This demo works on codespaces. Codespaces is a development environment available for free to anyone with a Github account. You'll be asked to fork the demo repository and from there the README guides you with further steps.
The demo uses the Continue VSCode extension.

Off to codespaces!

DHelp

Ask a question

Welcome to "Codex Central", your next-gen help center, driven by OpenAI's GPT-4 model. It's more than just a forum or a FAQ hub – it's a dynamic knowledge base where coders can find AI-assisted solutions to their pressing problems. With GPT-4's powerful comprehension and predictive abilities, Codex Central provides instantaneous issue resolution, insightful debugging, and personalized guidance. Get your code running smoothly with the unparalleled support at Codex Central - coding help reimagined with AI prowess.